Registration is now open for ACCELERATE 2014 in Atlanta, Georgia on September 18th. Reserve your spot today at Eventbrite — tickets are only $99 USD!



Archive for 'Uncategorized'

Reenergizing Your Web Analytics Program & Implementation

Those of you who have read my blog posts (and book) over the years, know that I have lots of opinions when it comes to web analytics, web analytics implementations and especially those using Adobe Analytics. Whenever possible, I try to impart lessons I have learned during my web analytics career so you can improve things at your organization. However, much of what I have written in the past has been product-related, covering features, functions and implementation tips. Obviously, there is much more than that involved when it comes to success in web analytics.

As some of you may know, the last role I held when I worked at Omniture (prior to Adobe acquisition) was one in which I was tasked with “saving” accounts that had gone astray. I encountered many accounts that had either a dysfunctional web analytics program or implementation. One way or another, they were not getting the desired value from their investment in SiteCatalyst. In my time serving this role, I came to see many common characteristics of those who were having problems and identified specific ways to address them to get clients back on track. After I left Omniture, I joined Salesforce.com as the head of web analytics. In that role, I encountered similar issues, as the Salesforce.com implementation and program had many of the same problems I had seen while at Omniture. Over the next few years, I had the opportunity to test out my “client-saving” techniques in a real life setting and had some great success in turning around the web analytics program at Salesforce.com.

While at Web Analytics Demystified for the past three years, I have continued my mission to help ailing web analytics programs and had the good fortune to work with some great clients. These clients have entrusted me to show them how to bring their web analytics programs back from the abyss or to improve good things they are already doing. Working with the great partners at Web Analytics Demystified, I have been able to learn and improve upon things I have done in the past. Last year at the Chicago eMetrics conference, I documented my lessons learned into a forty-five minute presentation entitled “Bringing your Web Analytics Program Back from the Dead!” I was a bit worried that no one would actually show up to my session, since coming was an implicit admission that things weren’t going so well. But to my surprise, there was standing room only!  Jim Sterne informed me that I had about 95% of all attendees in my breakout session! I was excited to share my experiences and afterwards, received a great response from the crowd, as well as a rush of people attacking me at the stage with follow-up questions. Apparently, I had hit some sort of nerve with the topic (Note: This summer I will be presenting a follow-up session at Chicago eMetrics on the topic)!

Since then, I wondered how I could share this information with more folks who may be interested in improving or re-energizing their web analytics programs and/or implementations. I considered writing a book on the topic, but having recently written a book, I knew that this was a massive undertaking and that my busy schedule wouldn’t allow it. Instead, I decided to partner with my old friends at Adobe to create a new white paper on the topic. In this white paper, I have tried to get down to the core tenants of my approach to reenergizing web analytics programs and synthesized it to under twenty pages of content. While most of the concepts in the paper were learned working with Adobe clients, I believe that the principles will apply to any web analytics technology or program. In fact, I believe that the white paper would also apply to non-web analytics programs, as much of it goes back years to by time working at Arthur Andersen in the nineties.

Therefore, without any more preamble, I am pleased to announce the immediate availability of this new Adobe-sponsored white-paper entitled “Reenergizing Your Web Analytics Program.” I hope that you will take the time to read it and take advantage of some of the lessons and techniques I have learned over the past 10+ years so that you and your organization can improve your program/implementation. As a young industry, I think it is the responsibility of us “old-timers” to pass on what we have learned so others don’t have to “reinvent the wheel.”

Click here to download white paper

A big thanks goes out to my friends at Adobe for sponsoring this white paper and making it happen. Enjoy!

Published on April 22, 2014 under Uncategorized

Current Order Value [Adobe SiteCatalyst]

I recently had a client pose an interesting question related to their shopping cart. They wanted to know the distribution of money its visitors were bringing with them to each step of the shopping cart funnel. For example, what percent of visitors have between $25 and $50 in their cart when they reach the “Billing” step of the conversion funnel? Does this percentage remain constant throughout the funnel or are there significant drop-offs? Unfortunately, this is not something that can be easily derived in SiteCatalyst, but with a bit of creativity, I will show you how you can add this data to your implementation.

Calculating Current Order Value

The first step in this process is to work with your developers to create a new Counter eVar that will hold the current order value. As soon as a visitor adds an item to the cart, pass the dollar amount associated with that cart addition to the Counter eVar (in addition to passing it to a currency event as prescribed in my “Money Left On Table” blog post). This value will be bound to the Cart Addition success event and future cart events unless it is modified. If the visitor adds more products to the cart, pass in those amounts and if the visitor removes an item from the cart, subtract it from the Counter eVar value (remember you pass values to Counter eVars using the “+” or “-” sign). I would expire the Counter eVar at the Purchase or Visit (if your site doesn’t have a persistent cart).

By having these values in the Counter eVar, you will end up with many different dollar amounts when you open the eVar report with one of your cart events. Here is an example of what the eVar report might look like:

Obviously, this report is not that readable, so the next step is to classify it into meaningful groupings, such as Under $20, $21-$35, $36-$50, etc… This will allow you to analyze the data in buckets and look for insights. Which groupings you choose are up to you and you can use SAINT to have multiple groups, such as every five dollars, every ten dollars, etc… Here is what it might look like after the SAINT Classification:

This general concept is similar to one that I described in my Revenue Bands post, but in that scenario, we were just passing the final order amount to a regular text eVar. The difference here is that we are using the Counter eVar to adjust the order value up or down as it progresses through the cart process.

Viewing Distribution

Once we have the current order values tied to each stage of the cart funnel and have grouped them accordingly using SAINT, our next challenge is to compare the distributions. There are a few different comparisons you can make with this data, so I will touch upon each of them. The first one you might want to see is whether the various percent distributions are steady or going up/down over time. In this case, you may not care about the actual raw numbers that are associated with each order value range, but rather, are most likely more interested in the percent of the total. For example, it may not be that interesting that 2,500 checkouts fell into the range of $15-$25, but it may be interesting to know that this dollar range represented 15% of all visits to the checkout step of the funnel. If you could see this percentage, then you could trend it over time and see if that $15-$25 bucket is increasing, decreasing or steady over time.

To see these percentages, you have two options, the first is to download data to Excel and create formulas to calculate the percent and trend it over time. If you want to use the SiteCatalyst interface, the best way to do this is to employ the “Total Metrics” feature. This feature allows you to create a calculated metric that divides the row value by the total at the bottom of the report. For example, if you wanted to calculate the percent of each dollar band while at the Checkout step, you would divide Checkouts by Total Checkouts using a formula like the one shown here:

This formula moves the percent shown in the regular eVar report front and center so it is the actual metric of the report. To visualize this better, let’s look at the previously shown report with this new metric column added:

As you can see, the percentages that were previously on the right side of the column (more as an FYI), are now present by themselves as a real metric in SiteCatalyst. Now you can use this percentage as a true metric, meaning that you can trend it over time and see its historical performance:

This allows you to see how each dollar amount band does and do some hard-core web analysis!

Another analysis you may want to do with this data is to see the drop-off between the dollars amount percentages added to cart, the percentages making it to checkout, etc… This is a bit more complex because you are looking at one dollar amount grouping, but seeing how it changes as visitors get further in the cart process. Unfortunately, there is no great SiteCatalyst report for comparing different percentages over time, so this analysis will have to be done in Excel.

To begin, you will want to create additional “Total” metrics like the one shown above for the other cart steps that you care about. In SiteCatalyst, this is what a report might look like, though it is limited in its use. In this case, the client has a customization step in the funnel, a billing page step and then a checkout step. Using the “Total” metrics, you can compare the changes in dollar amounts at the various steps of the funnel:

In this case, we are looking to see how consistent the percentages are across each row and seeing if we can identify any problem areas. However, to do analysis on this, Excel might be a better tool since it is easier to compare the percentages between different columns. Also keep in mind that you can break this report down by Product or Product Category to see how these percentages change by Product.

Final Thoughts

If your website has discrete steps in its funnel and if you are curious to see how much money visitors have at each step of the cart, the preceding is one way to do this. In addition to what I have shown here, having this information can be useful in other ways. For example, if you want to build a segment of all cases in which a visitor had more than $100 at the checkout step, but did not purchase, the eVar described here can be used as part of your segment criteria. I am sure there are many other ways to use this data as well, but hopefully this gives you some food for thought.

 

Published on March 17, 2014 under Uncategorized

Currencies & Exchange Rates [Adobe SiteCatalyst]

If your web analytics work covers websites or apps that span different countries, there are some important aspects of Adobe SiteCatalyst (Analytics) that you must know. In this post, I will share some of the things I have learned over the years related to currencies and exchange rates in SiteCatalyst.

Implementation

When you work for a multi-national organization, the first decision you have to make is whether you plan to have a different report suite for each country website or whether you will combine all data into one report suite and use segmentation for day-to-day analysis. For the pros and cons of this decision, I suggest you refer to this old post that covers multi-suite tagging vs. segmentation. As noted in that post, one of the downsides of using one report suite and segmentation is that you cannot have a different currency for each country. I find this very limiting, so let’s assume that you have a different report suite for each country site in your organization. When implementing each report suite, you will assign a currency that the report suite will use. For example, if the report suite is for Japan, in the Administration Console, you will make the currency Japanese Yen:

Once you do this, you just need to make sure that when you pass Revenue and currency success events that you set the s.currencyCode variable to the appropriate currency code for that country (i.e. JPY). This will tell SiteCatalyst that the numbers you are passing should be stored as Japanese Yen. If you are using multi-suite tagging and sending a second copy of data to a global report suite, then Revenue and currency success events will be translated into the currency of the global report suite (i.e. US Dollars) using the currency exchange rates found on xe.com. This allows your users in one country to see data in their own local currency, while letting executives see data rolled-up in a master suite in one unified currency.

One-Report Suite Only

As mentioned above, if you don’t have a separate report suite for each country site, either having just one report suite for the entire organization or a report suite for a region that contains multiple currencies, you cannot take advantage of the preceding currency translation feature. In this case, you have two choices. Your first choice is to use the same currency for all countries and pass data in that currency at the time of data collection. For example, if you have a European report suite, you may choose to use Euro as the primary currency and translate British Pounds and other non-Euro currencies into Euros at the time data is passed into SiteCatalyst. The second option is to pass currency amounts into a Numeric Success Event in a way that is currency agnostic. In this approach, you would not use the out-of-box Revenue event and instead would create a custom Numeric success event and pass in the raw numbers in the currency of that country. For example, if a 200 Euro order takes place in Germany, you would pass in a value of 200 and if a 300 British Pound order takes place, you would pass in a value of 300 to the Numeric success event. At the same time, you should pass in the currency the order took place in to an eVar. Once you have the raw transaction amount and the currency type, you can download the data to Excel using Adobe ReportBuilder and translate the raw Numeric success event numbers into the appropriate currency using a lookup table and referencing the eVar that indicates the currency. While this will not provide a way to see local currencies within the native SiteCatalyst interface, you can at least have your Excel dashboards show local currencies. Obviously you can use both of these approaches concurrently, using a master currency for the region and then providing local currencies in an Excel dashboard.

Pegged Exchange Rates

Over the years, I have worked with several clients that use “pegged” exchange rates. In this scenario, their organization uses one set of currency exchange rates for the entire fiscal year instead of using the daily exchange rates. This causes a problem for Adobe SiteCatalyst, since its default behavior is to use the daily exchange rates found on xe.com. Keep in mind that the local currencies in country-specific report suites will be fine since they are not being translated into a master currency. In this scenario, the only figure that is negatively affected is the currency amount in your global report suite, since that is when currency translation occurs. For example, if you collect an order for 300 Euro in Germany and the German report suite is set to Euros, everything will be fine. However, when that 300 Euro order is sent to the global report suite (let’s assume it is a US-based organization), it will be translated into US Dollars by default using today’s exchange rate instead of your pegged exchange rate (which can be quite different).

Unfortunately, there isn’t a way to override this default behavior, so I recommend using a DB VISTA rule to have SiteCatalyst lookup the pegged exchange rates published by your organization. As currency data is collected, you can use DB VISTA to bypass or overwrite the exchange rate translation done by SiteCatalyst with the rates approved by your organization. Unfortunately, DB VISTA rules cost a few thousand dollars, but in this case, it is probably worth it to have your global currency figures reflected correctly.

Interface Currency Setting

The last area related to currencies I want to cover is the currency setting found within the SiteCatalyst interface itself. I call this out because it can be very dangerous if you do not understand it. In the Report Settings area of the left navigation, there is a way to change the currency that you see when using SiteCatalyst. Here is what it looks like:

From this screen you can change the currency setting you use. Here is an example of me changing it from US Dollars to Euros:

Doing this will now show currency reports in Euros:

The dangerous part of this feature is that it seems like it does more than it actually does. How awesome is it that we instantaneously converted all of our data from US Dollars to Euros? Unfortunately, this is a mirage. Using this feature simply translates all historical data into the new currency (Euros in this case) using the current exchange rate. This means that historical data is not converted using the exchange rate that was present at the time the data was collected. Therefore,  if the exchange rate has changed significantly, our data will be off. This is why it is important that you educate your users about this feature before they start using it and present inaccurate data to people in your organization.Once you understand how this feature works, you may re-think using this feature and proactively discourage its use!

 

Published on March 10, 2014 under Uncategorized

Linking Authenticated Visitors Across Devices [SiteCatalyst]

In the last few years, people have become accustomed to using multiple digital devices simultaneously. While watching the recent winter Olympics, consumers might be on the Olympics website, while also using native mobile or tablet apps. As a result, some of my clients have asked me whether it is possible to link visits and paths across these devices so they can see cross-device paths and other behaviors. This type of linking has long been available using advanced tools like Adobe Data Workbench (formerly known as Visual Sciences or Discover on Premise or Adobe Insight), but in this post I wanted to share some things you can do in SiteCatalyst (Adobe Reports & Analytics) as well.

Authenticated Visitors Only

The first thing to note, is that it is not easy to link visitors hitting your website and native apps if they are not authenticated via some sort of identifier (ID). As you probably know, visitors have different SiteCatalyst Visitor ID’s on each device, so it is hard to know which ID’s represent the same person. However, if your website/native app allows visitors to login using a customer ID or loyalty ID, you have more options available to you. Adobe has one approach called “visitor stitching” that you can read about here, but I have not seen many clients use that successfully. The reason I don’t see this working is that it requires a large change to your SIteCatalyst implementation involving replacing the out-of-the-box Visitor ID with your own Visitor ID.  This can have some major ramifications (i.e. distorted unique visitor counts) and many of my clients aren’t ready for that type of risk.

However, this solution can be modified a bit to be a bit more useful and that is  what I am going to discuss here. Instead of replacing the Visitor ID on your main report suite, I advocate creating a new “Authenticated Only” report suite in SiteCatalyst in which you send only authenticated traffic. This new report suite would most likely be populated using a VISTA Rule. When data is sent to this new report suite, the s.visitorID would be set to your own authenticated ID so it matches up across any device.

Let’s look at an example. Imagine that Joe Smith visits your website and views a few pages as an anonymous (non logged-in) visitor. Then on the fifth page of the visit, he authenticates. From that point on, you can send all of his traffic to a multi-suite tagged Authenticated Only report suite as a secondary server call. Next, let’s assume that Joe takes a break from your website and begins using one of your native mobile apps. Upon using the native app, he authenticates so all of his data also goes to the Authenticated Only report suite as a secondary server call. Since both of these actions are time-stamped, in the Authenticated Only report suite, you would see activity from both of Joe’s sessions, and in the order they took place. For example, in a path report you might see a series of pages Joe viewed while on the website and then in the next page flow report, see a path from a page on the website to a page found in the native app. Obviously, there is no direct link between these pages, but by passing both data elements to the same report suite, SiteCatalyst sees them as being consecutive. This can provide insights into when people are moving between different devices and what content they view on each. When it comes to pathing, you might want to consider setting a new version of the page name variable in which you pre-pend the digital channel to the page name (i.e. web:home page vs. app:home page) so when you see pages in pathing reports, you know which device the visitor was on when they viewed the page:

Seeing paths across multiple devices is cool, but that is only the tip of the iceberg! Since data coming from both platforms have the same Visitor ID, all eVars that you set will retain their values across devices since eVar values are tied to the Visitor ID. For example, if a visitors’ City is passed to eVar4 on the website, its value will persist for all actions taking place on the native app. This means that any Success Events set on the native app can be attributed to the visitor’s City, even though they never input the city within the mobile app! The same is true in reverse, as eVars captured in the native app will be available to the website. This eVar persistence can be very powerful when you think about things like Campaign Tracking Codes, which can be collected in either platform and extended to the other.

Another cool aspect of this solution is that you can do cross-device Segmentation. For example, you might want to build a “Visit” segment in which visitors viewed more than one device and XYZ actions took place. This would now be possible using the Authenticated Only report suite since the behavior on both devices looks to SIteCatalyst as if it all took place in one session (which it did!).

Another bonus of this solution is the ability to use the SiteCatalyst feature of Participation. Participation is only visit-based, so you can only see which pages within the visit led to Success Events (i.e. Orders). But when visitors switch devices, they are creating a new visit, which breaks Participation. But with this solution, any pages viewed on one device would show as having contributed (Participated) to success taking place on the other device, since both devices are included in the same visit!

Caveats

As always, there are a few caveats to any solution. The following are a few things to keep in mind before getting overly excited:

  • Sending traffic to another report suite will use additional secondary server calls which has a cost implication. To estimate how much this solution would cost, look at how many page views you have for authenticated pages (pages viewed by people who are logged in) and you will get a good approximation of how many additional server calls you will have to pay for
  • VISTA Rules also cost a few thousand dollars so that is another cost you would have to incur
  • Using this solution assumes that all of your report suites are set-up consistently, meaning that the same Success Events, eVars and sProps are used for your website and native app suites. You should be doing this as a best practice anyway for creating global report suites, but in case you are not, be sure to only pass in the variables that are common to both via the VISTA rule or you will get different numbers or values in the Authenticated Only report suite. Keep in mind that you can use VISTA rules to change the Event/eVar/sProp numbers on the fly if it is too difficult for you to sync up your implementations right away (though I don’t recommend doing this in VISTA as a long-term solution since it can be easily broken)
  • Any pages view before visitors authenticate will not be captured in the new Authenticated Only report suite. This means that you will not be getting the full picture of the visit in this new report suite. For example, you may not get the accurate entry page or miss the passing of some campaign tracking codes, but there are some more advanced techniques you can use to store this information and pass it on the first authenticated page
  • Using this approach with native mobile apps that store offline data is not recommended since the offline data timestamps can mess up your data collection and eVar attributions

Outside of these few caveats, if you want to see cross-device behavior, this is a relatively simple (and cheap) solution. Obviously, if you want to get much deeper into cross-channel behavior, you may want to investigate Adobe’s Data Workbench or tools like Causata (now owned by NICE). If you are interested in seeing how your visitors float between your digital channels/devices, feel free to give this approach a try…

Published on March 3, 2014 under Uncategorized

Onsite Search Term Exit Rates [SiteCatalyst]

Recently, I have had a few clients ask me the following question:

How can I determine which onsite search terms have the highest exit rate on the search results page?

This question also appeared on the Adobe Analytics message board. While it is easy to see how often visitors exit from your search results page, that analysis won’t show you which specific onsite search terms had higher or lower exit rates. Of course, you could pick one specific onsite search term and segment on that to see exit rates from the search results page for that term, but that is a non-scalable approach if you want to see this for multiple search terms or for all of them in descending order. So I thought I’d share some ideas on how you can tackle this type of analysis in Adobe SiteCatalyst.

Option #1 – Search Term Exit sProp

The first thing that comes to my mind to solve this problem is Pathing. Once pathing is enabled on an sProp, you can see entries and exits. In this case, you can pass in the onsite search term to a new Traffic Variable (sProp) on the search results page. You are probably already storing onsite search terms in an sProp so you can see search term pathing (seeing search terms used before and after other search terms). However, this sProp will be a bit different. For this sProp, all you want to know is whether they exited or not. To accomplish this, have your developers pass a value of “[did not bounce]” to the sProp if the visitor reaches any page on your website after the search results page. By passing this “dummy” value, you are ensuring that SiteCatalyst won’t see an exit if they reached a page beyond the search results page.

Once this is done, you can open this new sProp and add the Exits metric and see a list of search terms with the most exits in descending order:

If you see the “[did not bounce]” item, you can simply exclude that from the report using a search filter.

Option #2 – Pages After Search Terms

There may be cases in which you also want to see where visitors went after seeing search results for a specific onsite search term if they did continue their path. There are a few ways to do this. One way is to build a segment that isolates visits in which the onsite search term you care about was used and then look at the path reports for that segment. A downside of this approach is that it will include paths taking place before and after the search term was used unless you use Discover (Ad Hoc Analysis). Therefore, the way I would approach this is to continue building upon the concept above, but tweak it a bit.

The tweak you will make is to not pass the “[did not bounce]” value on the page after the search results page, but rather, to pass the s.pagename value to the new Search Term Exit sProp described above. Since this can be confusing, here is a recap of the tagging steps you’d want to tell your developer. On each page of the site except for the search results page, pass the value being passed to s.pagename to your new Search Term Exit sProp. When visitors are on the search results page, have your developer pass the onsite search term to the new sProp (I recommend inserting the phrase “term:” to make it clear which items in the new sProp are search terms and which are page names).  Believe it or not, that is it! For example, if a visitor is on the Greco Inc. home page and then searches for “boots” and then goes back to the home page, here are the three values that you would pass to the new Search Term Exit sProp respectively:

grecoinc:home:homepage
term:boots
grecoinc:home:homepage

By doing this, your end-users can open the Next Page Flow report for this new sProp, choose the onsite search term (“term:boots” in this case) and then see the path flows after the search term. The way pathing works, it will only show paths taking place after “term:boots” and the exit percent will be people who exited right from the search results page. Here is what the report might look like:

In SiteCatalyst, you can only see two levels of paths from the onsite search term, but if you have access to Discover (Ad Hoc Analysis), you can see an unlimited number of paths emanating from the onsite search term. As you can see, this version of the solution provides everything that option one provided, but also shows you the specific pages visitors viewed after each onsite search term. It is up to you to decide how much analysis you want to do and what questions you want to answer.

Another side-benefit of this approach is that you can take advantage of fall-out pathing reports. Let’s say that you want to know how often visitors searching for “boots” make it to the shopping cart or to the order confirmation page. To do this, you can create a fall-out report that starts with “boots” and then add your cart and order confirmation pages to the fall-out report as checkpoints.

In Discover, you can even group onsite search terms into buckets using the grouping feature and do a similar fall-out report from a group of terms leading to carts or orders!

I am sure there are many more ways to answer these types of questions, but for those focusing mainly on SiteCatalyst, I hope that this is helpful.

Published on February 17, 2014 under Uncategorized

Omni Man (and Team Demystified) Needs You!

As someone in the web analytics field, you probably hear how lucky you are due to the fact that there are always web analytics jobs available. When the rest of the country is looking for work and you get daily calls from recruiters, it isn’t a bad position to be in! At Web Analytics Demystified, we have more than doubled in the past year and still cannot keep up with the demand, so I am reaching out to you via this blog post. As you may have read in Eric Peterson’s blog post, earlier this year we have begun placing qualified web analytics folks at great clients and started a staffing business. This business grew out of requests by our clients and other friends in the industry for good people they could either hire or “rent” for long term projects. Since we know the folks at companies looking for people and also know many of the people in the industry, it seemed to make sense that we would help play match-maker.

However, what is most exciting to me, is our Team Demystified staffing area. Through Team Demystified staffing, we make you a virtual member of our Demystified team and place you on long-term engagements with us and our clients. This means that you get to work side-by-side with me and my partners. Through our online collaboration tools, you have a direct line into everyone at Demystified when you have questions or want advice on how to handle a situation at a client. In addition, we provide free training on web analytics tools like Adobe SiteCatalyst, Adobe ReportBuilder, Adobe Target and Google Analytics. If you are an independent contractor or at a job that is not satisfying, Team Demystified offers an opportunity to work with the best people in the industry, at amazing clients and help boost your career. Consider it to be an MBA in web analytics, only you get paid instead of paying for it!

Therefore, if you have business or technical skills related to web analytics, we want to hear from you. Even if our current opportunities aren’t right for you, we’d like to have you in mind as new opportunities arise. You can find my contact information on our website or send an e-mail to Wendy Greco.

Additionally, if you happen to be attending Adobe Summit in Utah, the Demystified team will be there. If you are interested in learning more about Team Demystified, please contact Wendy and she can arrange a time for you to meet with one of us to learn more.

Published on February 14, 2014 under Uncategorized

2014 Demystified Training Classes

Happy new year to you! Hopefully your new year has started better than mine as I have been hibernating to avoid the -40 degree temperatures here in Chicago! Since the new year is a time to start new diets, exercising and the like, it seemed like a good time to share some upcoming web analytics training classes that Web Analytics Demystified will be offering. Hopefully these classes will help you do more with your web analytics tools in 2014.

Adobe SiteCatalyst “Top Gun” Training – London, UK

Last year, I sojourned back to merry old England to host my one-day advanced SiteCatalyst class and it was a blast! We had a packed room with some super-smart web analysts and I put them through their paces. Those who thought they were a five out of a ten left feeling like they were sevens or eights and, unfortunately, some who thought they were nines or tens, left realizing they might have been more like fives or sixes! But in the end, it was fun to meet people from several European countries who all had a passion for Adobe SiteCatalyst. This month, a client project brings me back to London so I decided to put on a repeat class for those who weren’t able to attend last time. This will be a similar class, consisting of me teaching the behind the scenes stuff related to SiteCatalyst. The morning of the class covers all of the core features of the product and the afternoon session has exercises to see how well attendees can bend and manipulate SiteCatalyst to answer real-world SiteCatalyst implementation scenarios. While this class does not focus on the day-to-day SiteCatalyst interface, those who have attended have told me that it helped them understand how SiteCatalyst works and how they can better figure out how to explain to their developers what needs to be done to get them the reports they need to get data to internal stakeholders. Think of it as a bit of product implementation (minus the tagging) and part SiteCatalyst product owner class.

You can see many positive reviews for the class here on our corporate LinkedIn page: http://bit.ly/sitecatalysttopgun

If you are interested in attending the class you can register using this link: https://www.eventbrite.com/e/web-analytics-demystified-adobe-sitecatalyst-top-gun-training-tickets-9868103764

(Note: I apologize in advance that purchase must be made in US dollars.  I know this is bad form, but Eventbrite didn’t offer us many options here)


Adobe “Intensive” Training Classes – Portland, OR

For those not in Europe, Web Analytics Demystified will be offering a two day intensive class on Adobe’s core web analytics products in April, 2014. During these two days, we will be covering SiteCatalyst (Analytics), Discover (Ad Hoc Analysis), ReportBuilder and Test& Target (Target). I will be doing an abbreviated version of my “Top Gun” training, followed by Kevin Willeitner doing half day classes on Discover and ReportBuilder. Brian Hawkins will then conduct a half-day class on Adobe Target. These two days will be jam-packed with useful information for those using the Adobe Analytics suite and we are offering these classes at unheard of prices! This is a great opportunity to mingle with other Adobe clients and to learn from the three of us who have either written books on the subject or are in the process of doing so!

To learn more about this two-day “Adobe Intensive” class, please check out this link: http://www.webanalyticsdemystified.com/education/index.asp

 

ACCELERATE 2014

While we are just in the beginning stages of the planning, now is a good time to mark your calendar for our annual ACCELERATE conference. This year it will be held in Atlanta, GA and the dates are September 16-18. Like last year, we will be offering our advanced web analysis training classes during the days leading up to the conference. So if you are not near Portland, you will still have another chance to get advanced training this year should you so desire. Please mark your calendars now and look for more information to be coming soon.

 

Hopefully whether you are in Europe, west coast or east coast, you will have an opportunity to get some training from the Demystified team in 2014. I wish you a great start to the year and hope to see you at one of our events this year!

Published on January 9, 2014 under Uncategorized

Shipping, Discounts & Taxes [SiteCatalyst]

If you are an online retailer, it is likely that your orders that contain shipping, discounts and/or taxes. Over the years I have seen some good and bad ways to track shipping, discounts and taxes in SiteCatalyst so I thought I would share some tips that I have found helpful.

The Basics

To start, let’s talk about why you might want to track shipping, discounts and taxes in SiteCatalyst. If you sell products in retail stores and online, your customers have an opportunity cost associated with shipping. Customers can often save money by coming to your physical store to get a product, but there may be a convenience factor associated with having products shipped. By tracking the total shipping dollars associated with each product, it’s possible to see which products are commonly shipped and the associated dollars. You can also look at shipping dollars as a standalone metric to see if shipping dollars per order are going up or down over time. The same concept applies to product discounts. You may have co-workers who want to see which products have been discounted and the amounts of the discounts. Tax amounts tend to be less meaningful from a web analytics perspective, but I will demonstrate how to track them in case your organization needs to track them for some reason.

The general method of tracking shipping is to use a Currency Success Event to store the amount the visitor spends on Shipping and the Products variable to connect that shipping amount to the Product ID. This is done through the product string syntax and might look like this:

s.events="purchase,event30";
s.products=";111;1;400;event30=5"

In this case, you have a scenario in which a visitor has purchased one unit of product ID#111 for $400 and is paying $5 in shipping. The latter is stored in success event 30 and can be viewed trended or broken down by Product.

If you also want to track discounts associated with the purchase, you can dedicate another currency success event to discounts. Discounts would work the same way as shipping in that it would be set in the products string using another currency success event. If there was a $10 discount for the product shown above, the syntax might look like this:

s.events="purchase,event30,event31";
s.products=";111;1;400;event30=5|event31=10"

Tax amounts are tracked in a similar manner. The syntax you might use if the preceding order had a tax amount of $32 is as follows:

s.events="purchase,event30,event31,event32";
s.products=";111;1;400;event30=5|event31=10|event32=32"

When this is done, if the preceding order were the only one to take place on your website, you would end up with a report that looks like this:

As you can see, tracking shipping, discounts and taxes is not that difficult and only involves using three new currency success events and the products string. However, things can get a bit trickier as I will show in the next section.

Fake Products?

One strange thing I have seen over the years related to tracking shipping, discounts and taxes is treating these as separate products. I am not quite sure why companies do this, but I am not a fan of this approach. This method adds a fake product called “shipping” or “taxes” to each applicable order and attributes the full shipping or tax amount to these fake products. Here is what the syntax might look like:

s.events="purchase,event30";
s.products=";111;1;400,;shipping;;event30=5.5"

This results in a Products report that looks like this:

As you can see, all shipping dollars are associated with the fake product of “shipping” instead of the products that drove shipping.

This approach can also wreak havoc on reports that use the Orders metric, like Merchandising reports, which will often show greater than 100% due to these fake products. Here is an example:

If you break down the above report by Product, you can see that the culprits are these fake products:

For all of the above reasons, I am not a fan of this “fake product” approach.

Multiple Products

Tracking shipping, discounts and taxes gets more difficult when visitors purchase multiple products concurrently. For example, there may be cases in which a visitor purchases three products and two have a shipping cost or discount, but the third product does not. I have a feeling that the multiple product scenario is what causes people to implement the preceding “fake product” method, but I think this is a lazy approach.

The more precise way to track shipping and discounts for multiple products is to associate the exact dollar amounts for each to each of the products being purchased as shown in the first examples above. If multiple products are purchased and we cared about tracking shipping and discounts, the resulting syntax might look like this:

s.events="purchase,event30,event31";
s.products=";111;1;400;event30=5|event31=10,;222;1;200;event30=2|event31=5"

In this example, two products were purchased and each has its own shipping and discount amount, correctly lined with the the product that drove these amounts.

However, there may be cases in which you cannot identify the exact amounts by product. In this case, you have a few options. The first (and preferred) option is to proportionally allocate shipping/discount amount based upon the purchase prices. For example, if someone purchases three products of amounts equal to $250, $100 and $50 and the shipping is $40, you could assign shipping amounts of $25, $10, $5 respectively. The same proportional approach would apply to discounts and taxes. While this isn’t perfect, it may be the best that you can do without working with IT to get the exact amounts per product. It is also something that can be done with some fancy JavaScript so you don’t have to get time with your IT folks. Another approach I have seen used is to simply put all shipping into the product with the largest revenue amount, but this will make your shipping data pretty inaccurate.

To summarize, tracking shipping, discounts and taxes is something you should consider for your SiteCatalyst implementation if you sell products online. However, the approach you take may depend upon what data you can get from your IT folks. Hopefully this post help outline some of the choices you have so you can determine which approach is the best for you.

Published on September 16, 2013 under Uncategorized

Campaigns & The None Row [SiteCatalyst]

The “None” row in SiteCatalyst. You either love it or hate it. It is amazing how far I have seen some companies go to avoid it and banish it from their reports. Personally, I love the “None” row and often try to explain to people its uses. In this post, I will review what the “None” row is and explain why not using it for Campaign Tracking can hurt your SiteCatalyst implementation.

The “None” Row Re-Visited

Way back in 2008, I explained the “None” row (apparently before images were allowed in blog posts ;-) ) as part of my explanation of Conversion Variables (eVars). For those unfamiliar, eVars store values that are collected along the way and when a Success Event takes place, the current value of each eVar gets credit for the Success Event. For example, if eVar 1 captures the zip code of 60035 and a form completion Success Event takes place, that form completion would be attributed to the zip code 60035. But what if no zip code had been passed to eVar 1? In that case, the Success Event would be attributed to the “None” row so that the total of the rows in the eVar report matches the total of form completions for the same time period. That is really all the “None” row is used for in SIteCatalyst. However, in the next section, I will show you the most common “None” row mistake I see and how to avoid it.

“None” Rows Gone Bad – Campaigns

The tracking of marketing campaigns is one of the most important uses of the “None” row. When visitors come to your website, it is customary to track their arrival with a marketing campaign tracking code. This might be a paid search keyword identifier, a friendly URL name or a tracking code associated with a social media campaign. More advanced companies (a.k.a. my clients) go even further and pass unpaid referrals a tracking code for things like SEO or external websites. Therefore, in the Campaigns (s.campaigns) SiteCatalyst report, the “None” row either represents the unpaid visits to your site or, if you are tracking paid and unpaid referrals, it represents your “Typed/Bookmarked” traffic.

So let’s imagine that in your implementation, you have tracking codes for all paid and unpaid referrals to your website and that the “None” row truly represents traffic that is typed/bookmarked. Let’s also suppose that you decide to have two versions of your Campaigns report in which the Campaigns variable (s.campaigns) expires at the Visit and another custom Campaign eVar expires after 30 days. The latter is common as many marketers want to see if the same visitor who came to the website from a specific tracking code comes back in the next 30 days and if so, to attribute success to that tracking code.

However, now let’s say that your new mean boss tells you that he/she doesn’t like seeing the “None” row in the two Campaign reports.  They say to you:”If it represents Typed/Bookmarked, why don’t we just pass that into SiteCatalyst so it is easily understood by everyone” (Since executives are great at simplifying things right?). So you have your developer write some code that passes in “Typed/Bookmarked” in the s.campaigns and the custom eVar variable if no known referrer is found. There is no more “None” row and everybody is happy.

Unfortunately, I have seen this scenario play out too many times. If you do what I just described, you have just ruined your Campaign eVar that has a 30 day expiration. By passing in a catch-all value of “Typed/Bookmarked” in the 30 day expiration eVar, you have forced SiteCatalyst to replace its current value with a new value of “Typed/Bookmarked.” In the previous example, if the visitor who came from the paid search keyword comes back a week later and types in your company’s URL, the paid search keyword will be overwritten. This means that you are taking away credit from paid campaigns and punishing them in cases where visitors actually remember your brand and come back to you a second time (and decide not to cost you money both times!). Passing in a catch-all value of “Typed/Bookmarked” turns your 30 day expiration into a Visit expiration. In this scenario, we already had a Campaign variable that had Visit expiration, but thanks to your boss, who doesn’t understand SiteCatalyst, you now have two of them!

This example illustrates the magic of the “None” row. It provides a way to see what percent of your success can be attributed to a specific value and what percent cannot. In the case of marketing campaigns, the “None” row represents the Typed/Bookmarked segment, and since no value is being passed, it has the added benefit of allowing your Campaign eVars that expire beyond the Visit to attribute success as intended. The same principle applies to all other eVars, but I find that Campaigns is the area in which my clients make this mistake most often. Therefore, my advice is to not be afraid of the “None” row, but rather, to embrace it and bask in its glory!

If Your Boss Really Hates The “None” Row

Lastly, if for some reason, you cannot convince your boss to live with the “None” row, there is one more trick I can show you to appease them. Unbeknownst to many SiteCatalyst users, it is possible to classify the “None” row. When building a SAINT file, if you use the value “~none~” as shown here, you can put whatever value you’d like for the “None” row in the classification report. Here I am showing renaming the “none” row with “Typed-Bookmarked” in a Marketing Channel classification of the Campaign variable.

However if you really wanted to, you could create a new “Cleaned Campaign Code” classification of the Campaigns report and assign a different value to the “None” row. Personally, I think this is cumbersome and would never do it, but it is technically possible if you really need to have a version of your low level camapign codes and don’t want to see a “None” row.

Hopefully this post will help those who may have inadvertently fallen into the trap described above, or at the very least, help others avoid it in the future. If you have any questions or comments, feel free to leave a comment below. Thanks!

Published on September 3, 2013 under Uncategorized

Product Cross-Sell [SiteCatalyst]

Editor’s Note: Despite the fact that Adobe is retiring the name “SiteCatalyst,” it will take me a while to adjust to that change so I will continue to refer to the product as such.

If you sell products on your website, there is a good chance that you try to cross-sell products. Made famous by Amazon.com, the concept of “People who like this product also like these products…” is forever ingrained in our heads. While SiteCatalyst isn’t a merchandising or recommendations tool in of itself (Adobe and others have products that specialize in that), it can be used to see how well each product is cross-selling other products. This type of cross-sell reporting can be useful from a web analysis perspective to answer the following questions:

  • How often does cross-sell occur (in general)?
  • Which products are added to the cart via cross-sell?
  • Which products cross-sell each other?
  • Which product categories cross-sell each other?

In this post, I will share some ways you can answer these questions using SiteCatalyst.

Tracking Cross-Sell During Cart Addition

The first step in tracking product cross-sell is to set-up your implementation in a way that can report upon Cross-Sell Cart Additions and capture which products are being cross-sold. To do this, let’s go through an example. Let’s imagine you work for AVG. As shown below, a visitor has just added the AVG Security 2013 product to the shopping cart. While there, the visitor sees a cross-sell for the Backup DVD product. If the visitor clicks the Add to Cart button for the Backup DVD product, it should be counted as a Cross-Sell Cart Addition. We would also want to capture which product drove the DVD Backup Cross-Sell Cart Addition.

To capture this in SiteCatalyst, when the visitor clicks on the blue “Add to Cart” button for the Backup DVD product, in addition to the normal Cart Addition success event for the DVD Backup product, you can pass the product ID of the referring product to a Merchandising eVar. The syntax might look something like this:

Using this syntax, we are telling SiteCatalyst that a Cart Addition took place for the Backup DVD product, and that it was driven by the Security 2013 product through eVar 10, which might be named in the Administration Console something like “Cross-Sell Product.” Keep in mind that in this sample code I am using actual product names only because it is easier to explain, but that in reality, you would want to pass product ID’s to the Products variable and eVar 10 instead and then use SAINT Classifications to add the friendly product names, category, etc…

So now let’s see what this ends up looking like in SiteCatalyst reports. If we were to open the Products report and add Orders and Revenue, we can see how often each product was purchased. But if we break this report down by our new Cross-Sell Product Merchandising eVar, we can see how often each product was purchased as a result of a Cross-Sell and even which product cross-sold it:

In the report above, we can see that the Backup DVD was sold without cross-sell approximately 95% of the time. For the remaining 5%, we can see which products drove its addition to the cart and ultimately its purchase. Here we can see that the AVG Security 2013 product is the top cross-seller of the Backup DVD product. Obviously, we can view the converse of this report by opening the Cross-Sell Product report and breaking it down by product to see what other products the AVG Security 2013 product cross-sold.

Another thing you may notice is that I set an additional success event (event30) in the above syntax. I did this so that I can have a metric that captures how often Cross-Sell Cart Additions took place. The scAdd success event captures all Cart Additions, but you would only set event 30 when the Cart Addition is the result of a Cross-Sell. This event 30 allows you to trend Cross-Sell Cart Additions and you can add it to the Cross-Sell Product eVar report to see how often each product drove visitors to click the Cross-Sell button. This can then be compared to Orders to see Cross-Sell conversion by product.

You can also use this additional Cross-Sell Cart Additions success event is to create a Calculated Metric to quantify what percent of all Cart Additions are Cross-Sell Cart Additions (Cross-Sell Cart Additions/Cart Additions). This is easily trended and you might have merchandisers set internal targets or goals to increase this via Test&Target or other tools.

You can also add both the Cart Additions and Cross-Sell Cart Additions success event to the Products report to see Cross-Sell Cart Addition % by Product:

If desired, you can also see cross-sell of product categories. If you are a good SiteCatalyst administrator, you should already be using SAINT Classifications to group products into product categories. If you are doing this, then you can view the above product cross-sell report by product category to see how well one product category is doing at cross-selling another product category. Using the example above, if we classified the AVG Security 2013 product into the Security product category and the Backup DVD product was classified into the Backup product category, we could see how often the Security Category cross-sells the Backup Category.

As an aside, if you are using a Merchandising variable to capture “Finding Methods” (capturing the method that visitors used to find products they ultimately purchase), you want to be sure that when the Cross-Sell Cart Addition Click success event you set a value of “Cross-Sell” to the Finding Methods eVar. This will allow you to bind each product driven by cross-sell appropriately.

So there you have it. Some ideas of you to ponder as you think about product cross-sell on your website. If you have any questions or additions, feel free to leave a comment here. Thanks!

Published on July 23, 2013 under Uncategorized

 


Recent Blog Posts

Registration for ACCELERATE 2014 is now open
Eric T. Peterson, Senior Partner

I am excited to announce that registration for ACCELERATE 2014 on September 18th in Atlanta, Georgia is now open. You can learn more about the event and our unique "Ten Tips in Twenty Minutes" format on our ACCELERATE mini-site, and we plan to have registration open for our Advanced Analytics Education pre-ACCELERATE training sessions in the coming weeks.

Continue reading this article ... ... more from Eric T. Peterson

Current Order Value
Adam Greco, Senior Partner

I recently had a client pose an interesting question related to their shopping cart. They wanted to know the distribution of money its visitors were bringing with them to each step of the shopping cart funnel.

Continue reading this article ... ... more from Adam Greco

A Guide to Segment Sharing in Adobe Analytics
Tim Wilson, Partner

Over the past year, I've run into situations multiple times where I wanted an Adobe Analytics segment to be available in multiple Adobe Analytics platforms. It turns out…that's not as easy as it sounds. I actually went multiple rounds with Client Care once trying to get it figured out. And, I’ve found "the answer" on more than one occasion, only to later realize that that answer was a bit misguided.

Continue reading this article ... ... more from Tim Wilson

Currencies & Exchange Rates
Adam Greco, Senior Partner

If your web analytics work covers websites or apps that span different countries, there are some important aspects of Adobe SiteCatalyst (Analytics) that you must know. In this post, I will share some of the things I have learned over the years related to currencies and exchange rates in SiteCatalyst.

Continue reading this article ... ... more from Adam Greco

Linking Authenticated Visitors Across Devices
Adam Greco, Senior Partner

In the last few years, people have become accustomed to using multiple digital devices simultaneously. While watching the recent winter Olympics, consumers might be on the Olympics website, while also using native mobile or tablet apps. As a result, some of my clients have asked me whether it is possible to link visits and paths across these devices so they can see cross-device paths and other behaviors.

Continue reading this article ... ... more from Adam Greco

The 80/20 Rule for Analytics Teams
Eric T. Peterson, Senior Partner

I had the pleasure last week of visiting with one of Web Analytics Demystified’s longest-standing and, at least from a digital analytical perspective, most successful clients. The team has grown tremendously over the years in terms of size and, more importantly, stature within the broader multi-channel business and has become one of the most productive and mature digital analytics groups that I personally am aware of across the industry.

Continue reading this article ... ... more from Eric T. Peterson

Ten Things You Should ALWAYS Do (or Not Do) in Excel
Tim Wilson, Partner

Last week I was surprised by the Twitter conversation a fairly innocuous vent-via-Twitter tweet started, with several people noting that they had no idea you could simple turn off the gridlines.

Continue reading this article ... ... more from Tim Wilson

Omni Man (and Team Demystified) Needs You!
Adam Greco, Senior Partner

As someone in the web analytics field, you probably hear how lucky you are due to the fact that there are always web analytics jobs available. When the rest of the country is looking for work and you get daily calls from recruiters, it isn’t a bad position to be in! At Web Analytics Demystified, we have more than doubled in the past year and still cannot keep up with the demand, so I am reaching out to you ...

Continue reading this article ... ... more from Adam Greco

A Useful Framework for Social Media "Engagements"
Tim Wilson, Partner

Whether you have a single toe dipped in the waters of social media analytics or are fully submerged and drowning, you’ve almost certainly grappled with "engagement." This post isn’t going to answer the question "Is engagement ROI?" ...

Continue reading this article ... ... more from Tim Wilson

It’s not about "Big Data", it’s about the "RIGHT data"
Michele Kiss, Partner

Unless you’ve been living under a rock, you have heard (and perhaps grown tired) of the buzzword "big data." But in attempts to chase the "next shiny thing", companies may focus too much on "big data" rather than the "right data."

Continue reading this article ... ... more from Michele Kiss

Eric T.
Peterson

John
Lovett

Adam
Greco

Brian
Hawkins

Kevin
Willeitner

Michele
Kiss

Josh
West

Tim
Wilson

Contact Us

You can contact Web Analytics Demystified day or night via email or by reaching out to one of our Partners directly.

» Contact Information

Web Analytics Demystified, Inc.
P.O. Box 13303
Portland, OR 97213
(503) 282-2601


Useful Links